Improved Subword Modeling for WFST-Based Speech Recognition
نویسندگان
چکیده
Because in agglutinative languages the number of observed word forms is very high, subword units are often utilized in speech recognition. However, the proper use of subword units requires careful consideration of details such as silence modeling, position-dependent phones, and combination of the units. In this paper, we implement subword modeling in the Kaldi toolkit by creating modified lexicon by finite-state transducers to represent the subword units correctly. We experiment with multiple types of word boundary markers and achieve the best results by adding a marker to the left or right side of a subword unit whenever it is not preceded or followed by a word boundary, respectively. We also compare three different toolkits that provide data-driven subword segmentations. In our experiments on a variety of Finnish and Estonian datasets, the best subword models do outperform word-based models and naive subword implementations. The largest relative reduction in WER is a 23% over word-based models for a Finnish read speech dataset. The results are also better than any previously published ones for the same datasets, and the improvement on all datasets is more than 5%.
منابع مشابه
Spoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملImproved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition
Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...
متن کاملData driven subword unit modeling for speech recognition and its application to interactive reading tutors
This paper proposes a novel token-passing search architecture for supporting subword unit based speech recognition and a corresponding algorithm based on the well-known LZW text compression method to determine a vocabulary of subword units in an unsupervised manner. We compare our subword unit selection algorithm to an existing approach based on Minimum Description Length (MDL) modeling and als...
متن کاملPerformance Improvement of Dysarthric Speech Recognition Using Context-Dependent Pronunciation Variation Modeling Based on Kullback-Leibler Distance
In this paper, we propose context-dependent pronunciation variation modeling based on the Kullback-Leibler (KL) distance for improving the performance of dysarthric automatic speech recognition (ASR). To this end, we construct a triphone confusion matrix based on KL distances between triphone models, and build a weighted finite state transducer (WFST) from the triphone confusion matrix. Then, d...
متن کاملSubword-based approaches for spoken document retrieval
This paper explores approaches to the problem of spoken document retrieval (SDR), which is the task of automatically indexing and then retrieving relevant items from a large collection of recorded speech messages in response to a user specified natural language text query. We investigate the use of subword unit representations for SDR as an alternative to words generated by either keyword spott...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017